Mathematica Tip Sheet

Built-In Constants:

$$
\pi=\mathrm{Pi} \quad e=\mathrm{E} \quad i=\sqrt{-1}=\mathrm{I} \quad \infty=\text { Infinity }
$$

Built-In Functions:

$\operatorname{Abs}[\mathrm{x}]$	$\operatorname{Sin}[\mathrm{x}]$	$\operatorname{ArcSin}[\mathrm{x}]$
$\operatorname{Sqrt}[\mathrm{x}]$	$\operatorname{Cos}[\mathrm{x}]$	$\operatorname{ArcCos}[\mathrm{x}]$
$\operatorname{Exp}[\mathrm{x}]$	$\operatorname{Tan}[\mathrm{x}]$	$\operatorname{ArcTan}[\mathrm{x}]$
$\log [\mathrm{x}](=\ln x)$	$\operatorname{Sec}[\mathrm{x}]$	$\operatorname{ArcSec}[\mathrm{x}]$
$\log [\mathrm{b}, \mathrm{x}]\left(=\log _{b}(x)\right)$	$\operatorname{Csc}[\mathrm{x}]$	$\operatorname{ArcCsc}[\mathrm{x}]$
$\mathrm{n}!$ or Factorial $[\mathrm{n}]$	$\operatorname{Cot}[\mathrm{x}]$	

Grouping:

Parentheses - () Used for grouping for basic operations, like +, -, *, /, .
Square Brackets - [] Used for functions to indicate the variable quantity to be used. (f [x]).
Curly Braces - $\} \quad$ Used for lists, vectors, matrices, and ranges of values for options.

Assigning Values:

$$
\begin{array}{ll}
\mathrm{x}=\text { value } & \text { Assigns value to the variable } \mathrm{x} . \\
\mathrm{x}=\mathrm{y}=\text { value } & \text { Assigns value (the same value) to both the variables } \mathrm{x} \text { and } \mathrm{y} . \\
\text { Clear }[\mathrm{x}, \mathrm{y}] & \text { Clears all values (if any) previously assigned to } \mathrm{x} \text { and } \mathrm{y} . \text { (USE OFTEN!) } \\
\mathrm{x}==\mathrm{y} & \text { Tests whether } \mathrm{x} \text { is equal to } \mathrm{y} \text {, often used when trying to solve equations. } \\
\operatorname{expr} / . \mathrm{x}->\text { value } & \text { Replaces every } \mathrm{x} \text { in expr with value. } \\
\operatorname{expr} / .\{\mathrm{x}->\text { xval, } \mathrm{y}->\text { yval }\} & \text { Replaces } \mathrm{x} \text { and } \mathrm{y} \text { in expr with xval and yval, respectively. } \\
\mathrm{f}\left[\mathrm{x}_{-}\right]=\operatorname{expr} & \text { Defines a function } \mathrm{f}, \text { of one variable. Remember the underscore (-)! } \\
\mathrm{g}\left[\mathrm{x}_{-}, \mathrm{y}\right]=\operatorname{expr} & \text { Defines a function } \mathrm{g}, \text { of two variables. }
\end{array}
$$

Some Algebra Commands:

Expand [expr]	Multiplies out products and powers in the expr.
Factor[expr]	Factors expr over the integers.
Apart[expr]	Decomposes expr into partial fractions.
Simplify[expr]	Performs algebraic transformations to give the simplest form of expr.
Solve[lhs ==rhs, x]	Solves the polynomial equation $l h s=r h s$ (exactly) for x . (Notice the double equal sign ==.)
FindRoot [lhs $==r h s,\{\mathrm{x}, \mathrm{a}, \mathrm{b}\}]$	Numerically solves the polynomial equation $l h s=r h s$ for x , starting in the interval (a, b).
$\mathrm{a}=\mathrm{x} / . \operatorname{Solve} \mathrm{l}$ [$h s==r h s, \mathrm{x}]$	Stores the solution value as the variable a. If there is more than one solution, add $[[n]]$ at the end of the command to store the $n^{t h}$ result as a.
sol=x/.FindRoot [lhs ==rhs, $\{\mathrm{x}, \mathrm{a}, \mathrm{b}\}]$	Stores the solution value as the variable sol.
Solve[\{eq1, eq2,...,eqN\}, \{x1,x2,..	xN\}]

Manipulating Lists and Vectors:

letters $=\{a, b, c\}$	A list called letters with three entries, a, b, and c.
	OR
	A vector called letters with components, a, b, and c.
letters $[[n]]$	Returns the $n^{\text {th }}$ element in the list called letters. (letters $[[3]]=c$).
Dot $[u, v]$ or $u . v$	Returns the dot product of two vectors u and v.
Cross $[u, v]$	Returns the cross product of two three-dimensional vectors u and v.
Table $[f[x],\{x, a, b, n\}]$	Creates a table (list) of values of $f[x]$, going from $x=a$ to $x=b$ in increments of $n . ~$
	(If no increment is specified, the default value of 1 is used.)
Tableform [list]	Prints the elements of a list in a vertical table.

Some Calculus Commands:

```
D [expr,x]
D[expr,{x,n}]
f'[x]
f ''[x]
Integrate[expr, x]
Integrate[expr,{x,a,b}]
Limit[expr,x->a]
Sum[a[n],{n,a,b}]
```

Finds $\frac{d}{d x}(\operatorname{expr})$.
Finds $\frac{d^{n}}{d x^{n}}(\operatorname{expr})$.
Finds the first derivative of a previously defined function $f[x]$.
Finds the second derivative of a previously defined function $f[x]$.
Evaluates the indefinite integral $\int \operatorname{expr} d x$.
Evaluates the definite integral $\int_{a}^{b} \operatorname{expr} d x$.
Evaluates $\lim _{\substack{x \rightarrow a \\ b}} \operatorname{expr}$.
Evaluates $\sum_{n=a}^{b} \mathrm{a}[\mathrm{n}]$.

Some Graphics Commands:

options]	Creates a 2D plot of $\mathrm{y}=\mathrm{f}[\mathrm{x}]$ for the interval $a \leq x \leq b$.
Plot $[\{\mathrm{f}[\mathrm{x}], \mathrm{g}[\mathrm{x}]\},\{\mathrm{x}, \mathrm{a}, \mathrm{b}\}$, options]	Creates a 2D plot of $\mathrm{y}=\mathrm{f}[\mathrm{x}]$ and $\mathrm{y}=\mathrm{g}[\mathrm{x}]$ on a single set of axes.
Plot3D[f[x,y], $\{\mathrm{x}, \mathrm{a}, \mathrm{b}\},\{\mathrm{y}, \mathrm{c}, \mathrm{d}\}$, options]	Creates a 3D plot of $\mathrm{z}=\mathrm{f}[\mathrm{x}, \mathrm{y}]$ over the region $a \leq x \leq b, \quad c \leq y \leq d$.
ParametricPlot[f[t], t , a, b\},options]	Creates a 2D plot of the parametrically defined function $\mathrm{f}[\mathrm{t}]=\{\mathrm{x}[\mathrm{t}], \mathrm{y}[\mathrm{t}]\}$ for $a \leq t \leq b$.
ParametricPlot3D[f[t], t , a, b $\}$, options]	Creates a 3D plot of the parametrically defined function $\mathrm{f}[\mathrm{t}]=\{\mathrm{x}[\mathrm{t}], \mathrm{y}[\mathrm{t}], \mathrm{z}[\mathrm{t}]\}$ for $a \leq t \leq b$.
ListPlot $[\{\{\mathrm{x} 1, \mathrm{y} 1\},\{\mathrm{x} 2, \mathrm{y} 2\},\{\mathrm{x} 3, \mathrm{y} 3\}\}]$	Plots the points with coordinates $(x 1, y 1),(x 2, y 2),(x 3, y 3)$.
Show[\{graph1,graph2\},options]	Displays the two graphs graph1, graph2 on a single set of axes.

Some Selected Plot Options:

AspectRatio->value	Sets the height-to-width ratio for the plot.
Axes->False	Exclude axes in the plot. (Default is True).
AxesLabel $->\{x l a b e l, y l a b e l\}$	Labels to put on the axes.
PlotPoints $->$ value	The number of points to plot. (Default is 25$).$
PlotRange $->\{\min , \max \}$	The range of values to display on the plot.
PlotStyle $->\{$ Thickness $[\mathrm{w}]\}$	Gives all curves a thickness of w as a fraction of the plot width.
PlotStyle $->\{$ RGBColor $[a, b, c]\}$	Produces color graphs: a, b, and c are values between 0 and 1 which represent the saturation of red, green, and blue, respectively.

A Few Other Useful Commands:

SHIFT + ENTER Executes an input cell.
\% Refers to the last answer output from Mathematica.
Caution: This is the last output generated, which is not necessarily the answer directly above the line on which \% is entered.
$\mathrm{N}[\operatorname{expr}, \mathrm{n}] \quad$ Returns a decimal value for expr, with n significant digits.
//N When typed after another command, converts it to a numerical (decimal) result.
Semicolon: ; Used at the end of successive lines of input, it evaluates, but suppresses output.
Space: Used between two variables, it indicates a multiplication. For example, $x y$ (with the space) means $x * y$, but xy (without any space) refers to a variable name.

[^0]
[^0]: Source: "Morrison's Mathematica Resources." Morrison's Mathematica Resources. N.p., n.d. Web. 1 Mar. 2016. https://www.nhn.ou.edu/~morrison/Mathematica/index.shtml

