Course Syllabus for MATH 241 (Calculus III)

Course description: Third course in calculus and analytical geometry including: vector analysis, Euclidean space, partial differentiation, multiple integrals, line and surface integrals, the integral theorems of vector calculus.

Vector Calculus Authors: Bill Davis, Horacio Porta and Jerry Uhl © 2006-2010 Publisher: Making Math, a division of O'Reilly Media

Credit: 4 hours.

Prerequisite: MATH 230 or MATH 231. Credit is not given for more than one of the following: MATH 241 and MATH 242, MATH 243, MATH 244, or MATH 380.

Required Material: Please Visit - https://cas-ile.illinois.edu/

Syllabus:

VC.01 Vectors Point the Way
Mathematics: Vectors. Adding and subtracting vectors. Tangent vectors, velocity vectors, and tangent lines. Length of a vector, dot product, and distance between two points. Perpendicular vectors. The push of one vector in the direction of another, and the formula
\[X \cdot Y = |X||Y| \cos[\theta] \]
where \(\theta \) is the angle between \(X \) and \(Y \).

Science and math experience:

VC.02 Perpendicularity
Mathematics: The cross product \(X \times Y \) of two 3D vectors. Lines and planes in 3D. Normal vectors for curved surfaces in 3D. Main unit normals, binormals.

Science and math experience:

VC.03 The Gradient
Mathematics:
The gradient and the chain rule. Level curves, level surfaces and the gradient as normal vector. The gradient points in the direction of greatest initial increase. Using linearizations to help to explain the chain rule. How to use the gradient for maximization and minimization. The total differential.

Science and math experience:

VC.04 Vector Fields and their Trajectories
Mathematics:

Science and math experience:

VC.05 Flow Measurements by Integral
Mathematics:
Measuring flow across a curve with the integral
\[\int_{\text{low}}^{\text{high}} (\mathbf{Field}[x(t),y(t)],\{y'[t],-x'[t]\}) dt \]

Measuring flow along a curve with the integral
\[\int_{\text{low}}^{\text{high}} (\mathbf{Field}[x(t),y(t)],\{x'[t],y'[t]\}) dt \]

Measurements made with path integrals
\[\int_{c} m[x,y]dx + n[x,y]dy \]

Directed curves; path integrals, path independence and gradient fields. Recognizing gradient fields: the gradient test.

Science and math experience:

VC.06 Sources, Sinks, Swirls, and Singularities
Mathematics:
Gauss-Green formula. Using a 2D integral to measure flow across closed curves. Using a 2D integral to measure flow along closed curves. Using the divergence of a vector field to identify sources and sinks. Flow across a closed curve and flow along a closed curve. Measurements in the presence of singularities.

Science and math experience:
2D electric fields, dipole fields, and Gauss’s law in physics.
\[\oint_C m[x,y]dx + n[x,y]dy \]

when

\[D[n[x,y],x] - D[m[x,y],y] = 0 \]

The Laplacian \(\frac{\partial^2 f[x,y]}{\partial x^2} + \frac{\partial^2 f[x,y]}{\partial y^2} \) and steady-state heat.

Maximum and minimum principle for functions \(f[x,y] \) satisfying Laplace's equation

\[\frac{\partial^2 f[x,y]}{\partial x^2} + \frac{\partial^2 f[x,y]}{\partial y^2} = 0 \]

Rotation and parallel flow.

VC.07 Transforming 2D Integral

Mathematics:

Going between uv-paper and xy-paper. Transforming 2D integrals: how you do it and why you do it. Linearizing the grids. Derivation of area conversion factor (Jacobian) via linearization.

Science and math experience:

How the plotting instructions reveal how to transform wicked 2D integrals into easy 2D integrals. Ribbons. More on flow measurements. Semi-log paper and log-log paper. What can happen at points at which the area conversion factor (Jacobian) is zero. What information the sign of the area conversion factor (Jacobian) reveals. Streamlines for flow out of an open pipe. Streamlines for airfoils.

VC.08 Transforming 3D Integrals

Mathematics:

3D integrals. Transforming wicked 3D integrals into easy 3D integrals. Volume measurements through transforming 3D integrals. Average value of a function.

Science and math experience:

How the plotting instructions reveal how to transform wicked 3D integrals into easy 3D integrals. Cylindrical coordinates. Centroids, and centers of mass. Cylinders, spheres, and tubes: plotting them and integrating on them. Switching the order of integration. Drilling and slicing spheres. The box product for measuring the volume of 3D parallelepipeds.

VC.09 Spherical Coordinates

Mathematics:

Spherical coordinates. Using spherical coordinates in 3D integration.

Science and math experience:

Using spherical coordinates to plot parts of spheres. Using spherical coordinates to plot cones and other surfaces. Earth-moon plots. Estimating the kill range of mobile lazer
cones. Inserting planes between disjoint spheres. Spherical coordinate art. Measurements in four and five dimensions.

VC.10 3D Surface Measurements
Mathematics:
Divergence and Gauss's formula in 3D. Using the 3D divergence to identify sources and sinks in 3D vector fields. Surface integrals. Using surface integrals to measure flow across 3D surfaces.

Science and math experience:
3D electric fields and Coulomb's law. Gauss’s 3D formula versus flow calculation via surface integrals. Using Gauss's formula to avoid a calculational nightmare: calculating flow across an oddball surface via calculating the flow across a substitute surface. Using Gauss's formula to take advantage of singularities: calculating flow across the skin of a solid region via calculating the flow across a substitute sphere. Flux of the electric field and Gauss's electric law in 3D. The 3D Laplacian

$$\nabla^2 f[x,y,z] = \frac{\partial^2 f[x,y,z]}{\partial x^2} + \frac{\partial^2 f[x,y,z]}{\partial y^2} + \frac{\partial^2 f[x,y,z]}{\partial z^2} = 0$$

and steady-state heat.

Maximum and minimum principle for functions f[x,y] satisfying Laplace’s equation

$$\nabla^2 f[x,y,z] = \frac{\partial^2 f[x,y,z]}{\partial x^2} + \frac{\partial^2 f[x,y,z]}{\partial y^2} = 0.$$